Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
1.
Foods ; 13(7)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38611389

ABSTRACT

Per- and polyfluorinated alkyl substances (PFASs) are a group of anthropogenic chemicals used in a range of industrial processes and consumer products. Recently, their ubiquitous presence in the environment as well as their toxicological effects in humans have gained relevant attention. Although the occurrence of PFASs is widely investigated in scientific community, the standardization of analytical method for all matrices still remains an important issue. In this review, we discussed extraction and detection methods in depth to evaluate the best procedures of PFAS identification in terms of analytical parameters (e.g., limits of detection (LODs), limits of quantification (LOQs), recoveries). Extraction approaches based on liquid-liquid extraction (LLE), alkaline digestion, and solid phase extraction (SPE), followed by liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) analysis are the main analytical methods applied in the literature. The results showed detectable recoveries of PFOA and PFOS in meat, milk, vegetables, eggs products (90.6-101.2% and of 89.2-98.4%), and fish (96-108%). Furthermore, the low LOD and LOQ values obtained for meat (0.00592-0.01907 ng g-1; 0.050 ng g-1), milk (0.003-0.009 ng g-1; 0.010-0.027 ng g-1), fruit (0.002-0.009 ng g-1; 0.006-0.024 ng g-1), and fish (0.00369-0.017.33 ng g-1; 0.05 ng g-1) also confirmed the effectiveness of the recent quick, easy, cheap, effective, rugged, and safe method (QuEChERS) for simple, speedy, and sensitive ultra-trace PFAS analysis.

2.
Environ Pollut ; 348: 123525, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38336139

ABSTRACT

This review would like to point out the state-of-art of the European legislation for the odour pollution determination and management. Odour is generated by a mixture of more or less volatile and persistent compounds that surround us in daily life. European directives impose the use of corresponding technical standards for the application of the limits imposed. The different approaches (chemicals and/or olfactometries) and integrated evaluation methods for measuring and characterizing odour, even if in a very different way in the European territories, will be reviewed and commented. Specifically, the authors will describe and comment the main procedures for odour concentration determination (e.g., multigas sensors, electronic sensors for odour monitoring). It is important to note that the definition of odour does not take into account if an odour is "good" or "bad", but only if it exists. The limit value must guarantee a total equivalent level of environmental protection and does not involve a greater polluting load in the environment. Further, a deep revision of the Italian situation in terms of legislation and studies, will complete the paper.


Subject(s)
Environmental Monitoring , Odorants , Environmental Monitoring/methods , Environmental Pollution , Italy
3.
Foods ; 13(3)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38338607

ABSTRACT

Notwithstanding the increased interest in wild edible plants, little is known on how some domestic thermal processes can affect their content. The aim of this study was to investigate the amounts of minerals, B1 and B2 vitamins, tocols, and carotenoids in raw, boiled, and steamed wild edible plants, namely, Sonchus asper (L.) Hill s.l., Sonchus oleraceus L., Cichorium intybus L., and Beta vulgaris L. var cicla. All vegetables were confirmed as high sources of lutein (from 6 to 9 mg/100 g) and ß-carotene (from 2 to 5 mg/100 g). Quite high amounts of violaxanthin and neoxanthin were found. Alfa-tocopherol and γ-tocopherol were the main tocols, with same contents in raw and processed vegetables (about 2.5 mg/100 g). The most abundant macro element and trace element were, respectively, potassium and iron. B1 and B2 vitamins were found in low amounts in almost all plants, with the exception of thiamine in Beta vulgaris (about 1.6 mg/100 g). Boiling led to a significant loss of minerals (up to 60%) and B-group vitamins (up to 100%), while, among carotenoids, it only affected violaxanthin levels (up to 90%). Steamed vegetables showed only a slight reduction, about 20%, in ß-carotene and lutein, with a marked decrease in violaxanthin and neoxanthin. One hundred grams of all fresh and cooked plants can be claimed as a source of vitamin A and E.

4.
Foods ; 12(21)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37959034

ABSTRACT

In recent years, human populations' exposure to microplastics via foods is becoming a topic of concern. Although microplastics have been defined as "emerging contaminants", their occurrence in the environment and food is quite dated. This systematic review aims to investigate the discrepancies which are characterizing the research in the microplastics field in foods, with particular regard to sample preparations, microplastics' concentrations and their effect on humans. For the selection of papers, the PRISMA methodology was followed. Discrepancies in the methodological approaches emerged and in the expression of the results as well, underlying the urgency in the harmonization of the methodological approaches. Uncertainties are still present regarding the adverse effects of microplastics on the human body. The scientific evidence obtained thus far is, in fact, not sufficient to demonstrate a concrete negative effect. This review has clearly underlined the need to standardise laboratory approaches to obtain useful results for better food safety management.

5.
Article in English | MEDLINE | ID: mdl-37623145

ABSTRACT

Air pollution and the increasing production of greenhouse gases has prompted greater use of renewable energy sources; the EU has set a target that the use of green energy should be at 32 percent by 2030. With this in mind, in the last 10 years, the demand for pellets in Italy has more than doubled, making Italy the second largest consumer in Europe. The quality of the pellets burned in stoves is crucial to indoor and outdoor pollution. Among other parameters, moisture and ash are used to classify pellets according to EN ISO 17225:2014. This work involved the analysis of the organic and inorganic fraction of both some finished products on the Italian market and some raw materials (e.g., wood chips) sampled according to the technical standard EN 14778:2011. The analytical results showed the presence of some substances potentially harmful to human health such as formaldehyde, acetone, toluene and styrene for the organic fraction and nickel, lead and vanadium for the inorganic fraction. The chemometric approach showed that it is the inorganic fraction which is most responsible for the diversification of the samples under study. The detection of some substances may be a warning bell about the impact of such materials, both for the environment and for human health.


Subject(s)
Air Pollution , Chemometrics , Humans , Italy , Europe , Acetone
6.
Toxics ; 11(3)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36977015

ABSTRACT

The emission of chemicals into the environment has increased in a not negligible way as a result of the phenomenon of globalization and industrialization, potentially also affecting areas always considered as "uncontaminated". In this paper, five "uncontaminated" areas were analyzed in terms of the presence of polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs), comparing them with an "environmental blank". Chemical analyses were carried out using standardized protocols. The 'environmental blank' results revealed the presence of Cu (<64.9 µg g-1), Ni (<37.2 µg g-1), and Zn (<52.6 µg g-1) as HMs and fluorene (<17.0 ng g-1) and phenanthrene (<11.5 ng g-1) as PAHs. However, regarding the results of the pollution status of the areas under study, fluorene (#S1, 0.34 ng g-1; #S2, 4.3 ng g-1; #S3, 5.1 ng g-1; #S4, 3.4 ng g-1; #S5, 0.7 ng g-1) and phenanthrene (#S1, 0. 24 ng g-1; #S2, 3.1 ng g-1; #S3, 3.2 ng g-1; #S4, 3.3 ng g-1; #S5, 0.5 ng g-1) were found in all areas, while the other PAHs investigated were detected at a concentration averaging less than 3.3 ng g-1. HMs were found in all of the investigated areas. In particular, Cd was detected in all areas with an average concentration of less than 0.036 µg g-1, while Pb was absent in area #S5, but present in the other areas with an average concentration of less than 0.018 µg g-1.

7.
Environ Sci Pollut Res Int ; 30(15): 44234-44250, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36683105

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs), heavy metals, and plasticizer residues are continuously released into the environment. The use of living organisms, such as Apis mellifera L. and honey, is advantageous as bioindicator of the environmental health status, instead of traditional monitoring methods, showing the ability to record spatial and temporal pollutant variations. The PAHs and heavy metal presence were determined in two sampling years (2017 and 2018) in five different locations in the Molise region (Italy), characterized by different pollution levels. During 2017, most PAHs in all samples were lower than limit of detection (LOD), while in 2018, their mean concentration in bee and honey samples was of 3 µg kg-1 and 35 µg kg-1, respectively. For heavy metals, lower values were detected in 2017 (Be, Cd, and V below LOD), while in 2018, the mean concentrations were higher, 138 µg kg-1 and 69 µg kg-1, in bees and honey, respectively. Honey has been used as indicator of the presence of phthalate esters and bisphenol A in the environment. The satisfactory results confirmed that both bees and honey are an important tool for environmental monitoring. The chemometric analysis highlighted the differences in terms of pollutant concentration and variability in the different areas, validating the suitability of these matrices as bioindicators.


Subject(s)
Environmental Pollutants , Honey , Metals, Heavy , Polycyclic Aromatic Hydrocarbons , Bees , Animals , Honey/analysis , Environmental Biomarkers , Plasticizers/analysis , Biological Monitoring , Polycyclic Aromatic Hydrocarbons/analysis , Metals, Heavy/analysis , Environmental Pollutants/analysis , Environmental Monitoring/methods
8.
Food Chem ; 404(Pt B): 134682, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36279784

ABSTRACT

Sea salt can be considered as a vector of microplastics in the human body. In this work, the sea salts collected from three Italian salterns has been solubilized in MilliQ water and filtered to extract microplastics. The visual quantification of microplastics with a stereomicroscope was carried out on the bases of their size, followed by a classification taking into account their physical characteristics. ATR-FTIR and Raman spectroscopy were used to identify the polymeric type of microplastics. Their significant presence has been revealed: 1653 ± 29 microplastics/kg of sea salt. In total, 80.6 % of microplastics have a fiber shape, 18.9 % a fragmented shape and 2.7 % are sphere. The size of microplastics has been analysed, indicating that the most frequent is between 0 and 500 µm. Polypropylene, polyamide and polyethylene were identified as the most frequent types of polymers. This research could be of global relevance given the significant export of Italian salt to foreign countries.


Subject(s)
Microplastics , Water Pollutants, Chemical , Humans , Plastics/analysis , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Polyethylene , Sodium Chloride, Dietary/analysis
9.
Article in English | MEDLINE | ID: mdl-36497650

ABSTRACT

Global primary energy consumption has been steadily increasing since the Industrial Revolution, and it is showing no sign of slowing down in the coming years [...].


Subject(s)
Environment , Industry
10.
Molecules ; 27(22)2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36431866

ABSTRACT

Palazzo Valentini, the institutional head office of Città Metropolitana di Roma Capitale, stands in in a crucial position in the Roman archaeological and urban contexts, exactly between the Fora valley, Quirinal Hill slopes, and Campus Martius. It stands on a second-century A.D. complex to which belong, between other archeological remains, two richly decorated aristocratic domus. One of these buildings, the domus A, presents an outward porticoed room with a fourth-century AD central impluvium (open air part of the atrium designed to carry away rainwater) with a black/white tiled mosaic pavement, the preservation status of which is compromised by an incoherent degradation product that has caused gradual detachment of the mosaic tiles. To identify the product and determine the causes of degradation, samples of the product were taken and subjected to SEM-EDS, XRF, NMR, FT-IR and GC-MS analyses. The findings reported in this study can help restorers, archaeologists and conservation scientists in order to improve knowledge about the Roman mosaic, its construction phases, conservation problems and proper solutions.


Subject(s)
Archaeology , Spectroscopy, Fourier Transform Infrared , Rome , Gas Chromatography-Mass Spectrometry , Magnetic Resonance Spectroscopy
11.
Article in English | MEDLINE | ID: mdl-36078606

ABSTRACT

The growing global energy demand requires the continuous development and optimization of the production of alternative energy sources. According to the circular economy approach, waste conversion into biogas and biomethane represent an interesting energy source. The input into the distribution network and energy conversion systems of biomethane requires quality monitoring and the use of cleaning up systems. Therefore, there is a need to constantly invest in the development of sampling and analysis systems that save time, costs, and materials. The purpose of this study was to use activated porous carbon fiber (APCF), an extremely versatile material for sampling and analysis by thermal desorption, to show the advantages it has over the adsorbents traditionally used for siloxane monitoring. Siloxanes are among the contaminating compounds that are mainly present in biogas and biomethane, and if not removed sufficiently, they endanger the quality and use of the gas. These are highly harmful compounds since during combustion, they produce quartz particles that are abrasive to the surfaces of the materials involved in the energy production process. In addition, siloxanes directly hinder the energy properties of biomethane during combustion, due to their radical scavenger properties. In this work, the efficiency of APCF tube was evaluated by comparing it with common multilayer tube thought sampling and analyzing siloxanes in lab scale and in real scale (biogas plant). Thermal desorption analysis coupled with GC-MS for the determination of siloxanes showed that the use of APCF allows to obtain better performance. This allows to deduce that APCF is an innovative material for the establishment of a better sampling and analysis method than the current ones, enabling better results to be achieved in the process of monitoring fuel quality in biomethane production and storage facilities.


Subject(s)
Biofuels , Siloxanes , Biofuels/analysis , Carbon Fiber , Charcoal , Porosity , Siloxanes/analysis
12.
Front Microbiol ; 13: 973670, 2022.
Article in English | MEDLINE | ID: mdl-35979494

ABSTRACT

The active regulation of extracellular pH is critical for the virulence of fungal pathogens. Penicillium expansum is the causal agent of green-blue mold on stored pome fruits and during its infection process acidifies the host tissues by secreting organic acids. P. expansum is also the main producer of patulin (PAT), a mycotoxin found in pome fruit-based products and that represents a serious health hazard for its potential carcinogenicity. While it is known that PAT biosynthesis in P. expansum is regulated by nutritional factors such as carbon and nitrogen and by the pH, the mechanistic effects of biocontrol on PAT production by P. expansum are not known. In this work, we assessed how optimal and suboptimal concentrations of the biocontrol agent (BCA) Papiliotrema terrestris LS28 affect both extracellular pH and PAT biosynthesis in P. expansum. In wounded apples, the optimal and suboptimal concentrations of the BCA provided almost complete and partial protection from P. expansum infection, respectively, and reduced PAT contamination in both cases. However, the suboptimal concentration of the BCA increased the specific mycotoxigenic activity by P. expansum. In vitro, the rate of PAT biosynthesis was strictly related to the extracellular pH, with the highest amount of PAT detected in the pH range 4-7, whereas only traces were detectable at pH 3. Moreover, both in vitro and in apple wounds the BCA counteracted the extracellular P. expansum-driven acidification maintaining extracellular pH around 4, which is within the pH range that is optimal for PAT biosynthesis. Conversely, in the absence of LS28 the pathogen-driven acidification led to rapidly achieving acidic pH values (<3) that lie outside of the optimal pH range for PAT biosynthesis. Taken together, these results suggest that pH modulation by LS28 is important to counteract the host tissue acidification and, therefore, the virulence of P. expansum. On the other hand, the buffering of P. expansum-driven acidification provided by the BCA increases the specific rate of PAT biosynthesis through the extension of the time interval at which the pH value lies within the optimal range for PAT biosynthesis. Nevertheless, the antagonistic effect provided by the BCA greatly reduced the total amount of PAT.

13.
Foods ; 11(9)2022 May 06.
Article in English | MEDLINE | ID: mdl-35564074

ABSTRACT

Formaldehyde, the simplest molecule of the aldehyde group, is a gaseous compound at room temperature and pressure, is colorless, and has a strong, pungent odor. It is soluble in water, ethanol, and diethyl ether and is used in solution or polymerized form. Its maximum daily dosage established by the EPA is 0.2 µg g-1 of body weight whereas that established by the WHO is between 1.5 and 14 mg g-1: it is in category 1A of carcinogens by IARC. From an analytical point of view, formaldehyde is traditionally analyzed by HPLC with UV-Vis detection. Nowadays, the need to analyze this compound quickly and in situ is increasing. This work proposes a critical review of methods for analyzing formaldehyde in food using sensing methods. A search carried out on the Scopus database documented more than 50 papers published in the last 5 years. The increase in interest in the recognition of the presence of formaldehyde in food has occurred in recent years, above all due to an awareness of the damage it can cause to human health. This paper focuses on some new sensors by analyzing their performance and comparing them with various no-sensing methods but focusing on the determination of formaldehyde in food products. The sensors reported are of various types, but they all share a good LOD, good accuracy, and a reduced analysis time. Some of them are also biodegradable and others have a very low cost, many are portable and easy to use, therefore usable for the recognition of food adulterations on site.

14.
Ecotoxicol Environ Saf ; 239: 113619, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35605320

ABSTRACT

Phthalic acid esters (PAEs) are classified as endocrine disruptors, but it remains unclear if they can enter the marine food-web and result in severe health effects for organisms. Loggerhead turtles (Caretta caretta) can be chronically exposed to PAEs by ingesting plastic debris, but no information is available about PAEs levels in blood, and how these concentrations are related to diet during different life stages. This paper investigated, for the first time, six PAEs in blood of 18 wild-caught Mediterranean loggerhead turtles throughout solid-phase extraction coupled with gas chromatography-ion trap/mass spectrometry. Stable isotope analyses of carbon and nitrogen were also performed to assess the resource use pattern of loggerhead turtles. DEHP (12-63 ng mL-1) and DBP (6-57 ng mL-1) were the most frequently represented PAEs, followed by DiBP, DMP, DEP and DOP. The total PAEs concentration was highest in three turtles (124-260 ng mL-1) whereas three other turtles had concentrations below the detection limit. PAEs were clustered in three groups according to concentration in all samples: DEHP in the first group, DBP, DEP, and DiBP in the second group, and DOP and DMP in the third group. The total phthalates concentration did not differ between large-sized (96.3 ± 86.0 ng mL-1) and small-sized (67.1 ± 34.2 ng mL-1) turtles (p < 0.001). However, DMP and DEP were found only in large-sized turtles and DiBP and DBP had higher concentrations in large-sized turtles. On the other hand, DEHP and DOP were found in both small- and large-sized turtles with similar concentrations, i.e. ~ 21.0/32.0 ng mL-1 and ~ 7.1/9.9 ng mL-1, respectively. Winsored robust models indicated that δ13C is a good predictor for DBP and DiBP concentrations (significant Akaike Information criterion weight, AICwt). Our results indicate that blood is a good matrix to evaluate acute exposure to PAEs in marine turtles. Moreover, this approach is here suggested as a useful tool to explain the internal dose of PAEs in term of dietary habits (δ13C), suggesting that all marine species at high trophic levels may be particularly exposed to PAEs, despite their different dietary habitats and levels of exposure.


Subject(s)
Diethylhexyl Phthalate , Phthalic Acids , Turtles , Animals , Diet , Diethylhexyl Phthalate/analysis , Ecosystem , Esters/analysis , Gas Chromatography-Mass Spectrometry , Phthalic Acids/analysis
15.
Data Brief ; 42: 108136, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35479420

ABSTRACT

This paper would like to show all the data related to an intensive field campaign focused on the characterization of the Polyaromatic Hydrocarbons (PAHs) composition profile in almost 60 honey samples collected in Central Italy. The analytical data here reported are the base for a study aimed to identify the pollution sources in a region. 22 PAHs were analyzed by means of ultrasound-vortex-assisted dispersive liquid-liquid micro-extraction (DLLME) procedure followed by a triple quadrupole gas chromatograph/mass spectrometer (GC-MS). A chemometrics approach has been carried out for evaluating all the data: in particular, principal component analysis and cluster analysis has been used both for the identification of the main natural/anthropogenic pollutants affecting a site and for evaluating the air quality.

16.
Food Chem ; 382: 132361, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35152011

ABSTRACT

The quality of honey is assessed through the determination of some commodity parameters: a certain importance is to be attributed to the absence of contaminating residues, in particular of Polycyclic Aromatic Hydrocarbons (PAHs). This paper deeply investigates the presence of 22 PAHs in 57 honey samples collected in Central Italy and identifies the possible source apportionment and fingerprint identification by DLLME-GC-MS analysis and a chemometric approach. Cluster Analysis and Principal Component Analysis have allowed to identify the main PAHs responsible of the contamination, benzo[a]anthracene and phenanthrene, characteristics pollutants of areas constantly exposed. The entire database has been compared to similar ones present in literature, particularly data from Serbia and Belgrado samples. The PCA applied to overall the data confirms the combustion to be the main contamination source in Italian samples whereas highlights the importance of the role of naphthalene, added during beekeeping practices in the other data-set.


Subject(s)
Environmental Pollutants , Honey , Polycyclic Aromatic Hydrocarbons , Chemometrics , China , Environmental Monitoring , Environmental Pollutants/analysis , Honey/analysis , Polycyclic Aromatic Hydrocarbons/analysis
17.
Toxics ; 9(11)2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34822670

ABSTRACT

The presence of phthalic acid esters (PAEs) in marine environments is an important issue. These chemicals are able to affect marine organisms, particularly marine turtles, and to act as endocrine disrupters. In this paper, for the first time, a simple and reproducible analytical method based on solid-phase extraction (SPE) coupled with gas chromatography-ion trap/mass spectrometry (GC-IT/MS) was developed for the extraction of phthalates from the blood of marine turtles. The extraction was obtained by using C18 phthalates-free as the stationary phase. In order to individuate the best working conditions for the extraction, the adsorption isotherms and breakthrough curves were studied. The overall analytical methodology was validated in terms of limit of detection (LOD, 0.08-0.6 ng mL-1), limit of quantification (LOQ, 0.4-0.8 ng mL-1), and correlation coefficients (>0.9933). By using this procedure, percentage recoveries ranging from 89 to 103% were achieved. The precision parameters (intra-day and inter-day) were studied, and the obtained values were smaller than 12.5%. These data confirm the goodness of the proposed analytical methodology, which is applied to real samples.

18.
Article in English | MEDLINE | ID: mdl-34770123

ABSTRACT

To investigate passive vaping due to sub-ohm electronic cigarettes (e-cigs), aerosol number size distribution measurements (6 nm-10 µm) were performed during volunteer-vaping sessions. E-liquids, with vegetable glycerin (VG) and propylene glycol (PG), with a VG/PG ratio of 50/50 (with nicotine) and 80/20 (without nicotine), were vaped with a double-coil, single aerosol exit hole at 25-80 W electric power, corresponding to 130-365 kW m-2 heat fluxes and with an octa-coil, four aerosol exit holes atomizers, at 50-150 W electric power, corresponding to 133-398 kW m-2 heat fluxes. At the lowest heat flux, lower particle number concentrations (NTot) were observed for the nicotine-liquid than for the nicotine-free liquid, also due to its higher content of PG, more volatile than VG. For the octa-coil atomizer, at 265 and 398 kW m-2, NTot decreased below the first-generation e-cig, whereas volume concentrations greatly increased, due to the formation of super micron droplets. Higher volume concentrations were observed for the 80/20 VG/PG liquid, because of VG vaporization and of its decomposition products, greater than for PG. For the double coil atomizer, increasing the electric power from 40 W (208 kW m-2) to 80 W (365 kW m-2) possibly led to a critical heat flow condition, causing a reduction of the number concentrations for the VG/PG 50/50 liquid, an increase for the 80/20 VG/PG liquid and a decrease of the volume concentrations for both of them. Coherently, the main mode was at about 0.1 µm on both metrics for both liquids. For the other tests, two main modes (1 and 2 µm) were observed in the volume size distributions, the latter becoming wider at 100 and 150 W (265 and 398 kW m-2), suggesting the increased emission of light condensable decomposition products. The lower aerosol emissions observed at 150 W than at 100 W suggest the formation of gas-phase decomposition products. The observation of low-count high-volume aerosols addresses the relevance of the volume metric upon measuring the second-hand concentration of the aerosols released by sub-ohm e-cigarettes.


Subject(s)
Electronic Nicotine Delivery Systems , Vaping , Aerosols , Humans , Nicotine , Propylene Glycol
19.
Article in English | MEDLINE | ID: mdl-34064840

ABSTRACT

The aim of the study was to analyze all powdered infant formulas authorized and commercialized in Italy at the time of the study to measure the concentrations of 40 elements, and to estimate the infants' intake of some toxic heavy metals for assessing possible related health risks. For this purpose, an optimized multi-element method was used through inductively coupled plasma mass spectrometry. Be, B, Al, Zr, Nb, Sb, Te, W, V, Cr and As concentrations were

Subject(s)
Infant Formula , Trace Elements , Humans , Infant , Italy , Powders , Risk Assessment , Trace Elements/analysis
20.
Article in English | MEDLINE | ID: mdl-33567749

ABSTRACT

This paper shows a characterization of the organic and inorganic fraction of river waters (Tiber and Marta) and ores/soil samples collected in the Northern Latium region of Italy for evaluating the anthropogenic/natural source contribution to the environmental pollution of this area. For organic compounds, organochloride volatile compounds in Tiber and Marta rivers were analyzed by two different clean-up methods (i.e., liquid-liquid extraction and static headspace) followed by gas chromatography-electron capture detector (GC-ECD) analysis. The results show very high concentrations of bromoform (up to 1.82 and 3.2 µg L-1 in Tiber and Marta rivers, respectively), due to the presence of greenhouse crops, and of chloroform and tetrachloroethene, due to the presence of handicrafts installations. For the qualitative and quantitative assessment of the inorganic fraction, it is highlighted the use of a nuclear analytical method, instrumental neutron activation analysis, which allows having more information as possible from the sample without performing any chemical-physical pretreatment. The results have evidenced high levels of mercury (mean value 88.6 µg g-1), antimony (77.7 µg g-1), strontium (12,039 µg g-1) and zinc (103 µg g-1), whereas rare earth elements show levels similar to the literature data. Particular consideration is drawn for arsenic (414 µg g-1): the levels found in this paper (ranging between 1 and 5100 µg g-1) explain the high content of such element (as arsenates) in the aquifer, a big issue in this area.


Subject(s)
Volatile Organic Compounds , Water Pollutants, Chemical , Environmental Monitoring , Italy , Rivers , Water , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...